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ABSTRACT

This paper reports on recent experiments for speech to text
(STT) translation of European Parliamentary speeches. A Spanish
speech to English text translation system has been built using data
from the TC-STAR European project. The speech recognizer is a
state-of-the-art multipass system trained for the Spanish EPPS task
and the statistical translation system relies on the IBM-4 model.
First, MT results are compared using manual transcriptions and
1-best ASR hypotheses with different word error rates. Then, an
n-best interface between the ASR and MT components is inves-
tigated to improve the STT process. Derivation of the fundamen-
tal equation for machine translation suggests that the source lan-
guage model is not necessary for STT. This was investigated by us-
ing weak source language models and by n-best rescoring adding
the acoustic model score only. A significant loss in the BLEU
score was observed suggesting that the source language model is
needed given the insufficiencies of the translation model. Adding
the source language model score in the n-best rescoring process
recovers the loss and slightly improves the BLEU score over the
1-best ASR hypothesis. The system achieves a BLEU score of
37.3 with an ASR word error rate of 10% and a BLEU score of
40.5 using the manual transcripts.

1. INTRODUCTION

In this paper experiments with an integrated speech to text trans-
lation system for European Parliamentary speeches are reported.
The task is that of translating European parliamentary speeches
from Spanish to English using data from the European TC-STAR

(Technology and Corpora for Speech to Speech Translation) inte-
grated project. The speech recognizer is a state-of-the-art multi-
pass system on audio and textual data from the Spanish EPPS task
and the statistical translation system relies on the IBM-4 model.
The impact of the speech recognizer performance and the quality
of the source language model on the translation quality for a real
world task is studied.

There has been a recent increase in activity studying the close
coupling of speech recognition and translation, both from a the-
oretical and experimental point of view [8, 16, 13, 17, 12, 7]. In
the case of a good translation model, one may argue that the source
language model is not necessary for the global task of speech trans-
lation. This could not be confirmed in our experiments.

THIS WORK WAS PARTIALLY FINANCED BY THE EUROPEAN
COMMISSION UNDER THE FP6 INTEGRATED PROJECT TC-STAR.

The remainer of this paper is organized as follows. In the
following section the task and the available data for developing
the speech recognizer and the statistical translation system are de-
scribed. Sections 3 and 4 summarize the architecture of the speech
recognizer and the translation system respectively. The experi-
ments performed in order to get more insight on the coupling of
recognition and translation are described in Section 5.

2. TASK AND DATA DESCRIPTION

The TC-STAR project,1 financed by the European Commission
within the Sixth Framework Program, is envisaged as a long-term
effort to advance research in all core technologies for Speech-to-
Speech Translation (SST). SST technology is a combination of
Automatic Speech Recognition (ASR), Spoken Language Trans-
lation (SLT) and Text to Speech synthesis (TTS). The objectives
of the project are to significantly reduce the gap between human
and machine translation performance.

Within the TC-STAR project, the data consists mainly of texts
of the public European Parliament Plenary Sessions (EPPS), held
from 1996 to 2004, in English and Spanish, and the corresponding
minutes edited by the European Parliament also known as the Fi-
nal Text Editions [6]. The training portion of the data dates from
April 1996 through October 16, 2004. Experimental results re-
ported in this paper make use of the plenary sessions from Octo-
ber 26 and 27, 2004. The final text editions in English and Spanish
were aligned at the sentence level. These parallel texts are used to
train the statistical machine translation system. Table 1 gives some
statistics about the data.

Spanish English
Sentence Pairs 1.2M
Total # Words 31.4M 30M

Vocabulary size 140k 94k
Singletons 49k 34k

Table 1. Statistics of the parallel texts (EPPS final text edition)
used to train the statistical machine translation system

Audio recordings are available for a portion of the data from
2004. The sessions from May to October 2004 were transcribed
and used to train the speech recognizer (about 40h). A 4h portion
was reserved for use as a development test set (see Table 2). The
transcriptions of the ASR development test data can also be used to
test the translation engine thereby allowing the loss in performance
due to ASR errors to be assessed. The resources available to train

1http://www.tc-star.org/
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Train Dev
Duration ≈ 40h 3.7h

Sentences 27k 1189
Words 3.5M 196k

Vocabulary 27285 4018

Table 2. Statistics of the resources available to build the speech
recognizer.

the language models for the speech recognizer are the transcrip-
tions of the training data (3.5M words) and the Spanish final text
edition (31.4M words). Within the TC-STAR project, the recog-
nition of the English parliament sessions and their translation to
Spanish is also evaluated, but not considered in this paper.

3. SPEECH RECOGNITION

The speech recognizer for the Spanish EPPS data uses the same ba-
sic modeling and decoding strategy as in the LIMSI English broad-
cast News system [5]. Details on the adaptation to the EPPS task
are given in the following sections.

3.1. Models

The acoustic models were trained on about 40 hours of audio train-
ing data from the European Parliament speech sessions. The acous-
tic models are tied-state word position dependent triphones, where
the state-tying is obtained using a divisive decision tree clustering.
The models used in the first decoding pass include 1700 tied states
with 32 Gaussians per state and they cover 1523 triphones. The
second pass models cover 5275 triphone contexts and include 5k
tied states with 32 Gaussians per state.

A 64k case sensitive vocabulary was used for language model-
ing. This vocabulary has an OOV rate of 0.6% on the development
test data. The language model was built by interpolating three n-
gram language models trained on the following three data sets:
the transcriptions of the acoustic training data (3.5M words), the
final text edition of the Parliament sessions for the period 1996-
1999, and final text edition for the period 2000-2004. Modified
Kneser-Ney smoothing was used as implemented in the SRI LM
toolkit [15]. An EM procedure was used to find the interpolation
coefficients that minimize the perplexity on the development data.
The optimal coefficients are 0.29 for the transcriptions and 0.29
and 0.42 for the two parts of the final text editions.

Since only a limited amount of LM training data was available,
a neural network was used to estimate the LM probabilities [1, 14].
The basic idea is to project the word indices onto a continuous
space and to use a probability estimator operating on this space.
Since the resulting probability functions are smooth functions of
the word representation, better generalization to unknown n-grams
can be expected. The neural network is used to learn the projection
of the words onto the continuous space and to estimate the n-gram
probabilities. The neural network is trained on the same data as the
back-off LM, that is about 35M words (see [14] for more details).
The two language models (backoff n-gram and neural-net n-gram)
are interpolated during lattice rescoring.

3.2. Decoding

Word recognition is performed in two passes, where each decoding
pass generates a word lattice which is expanded with a 4-gram

LM. During the first pass initial hypotheses are generated, which
are then used for speaker-based acoustic model adaptation. This
is done via a one pass (about 1xRT) cross-word trigram decoding
with gender-independent sets of position-dependent triphones and
a trigram language model. The trigram lattices are rescored with a
4-gram language model. In the second pass, unsupervised acoustic
model adaptation of speaker-independent models is performed for
each speaker using the CMLLR and MLLR techniques with two
regression classes. The segment clusters corresponding to each
speaker are obtained automatically using a GMM based clustering
procedure [5]. After model adaptation a lattice is generated for
each segment using a bigram LM and as for pass 1, the lattices are
then rescored with a 4-gram language model.

The lattices of the last decoding pass are rescored by the neural
network LM interpolated with the backoff n-gram LM. The over-
all runtime is under than 7xRT. The 4-gram lattices are converted
to a confusion network with posterior probabilities by iteratively
merging lattice vertices and splitting lattices edges until a linear
graph is obtained, also known as a consensus network. The words
with the highest posterior in each confusion set are hypothesized.

Back-off 4-gram NN 4-gram
Perplexity 81.0 71.5

Word error, 1-best 11.1% 10.2%
consensus 10.6% 10.0%

Table 3. Performance of the Spanish speech recognizer (automatic
segmentation)

.

Table 3 gives the word error rates of the Spanish speech rec-
ognizer with and without consensus decoding, using either a back-
off or the neural network language model. Consensus decoding
achieves a word error reduction of about 0.5% when used with a
back-off LM, but the gain is smaller when the neural network LM
is used. Overall the neural network approach achieves a word er-
ror reduction of more than 0.6% with respect to the back-off LM.
When generating n-best lists for close coupling with the transla-
tion module, consensus decoding is not used in order to keep the
acoustic and language model scores.

The results reported in Table 3 were obtained with a segmen-
tation at long pauses, i.e. not necessarily at sentence boundaries.
However current MT evaluation metrics like BLEU, however, sup-
pose that the segmentation corresponds to the sentence structure of
the reference translations. Using the segmentation imposed by the
reference translations results in a 0.7% loss in the word error rate
(The error rate increases from 10.2% to 10.9%).

In the following sections, experiments with various ASR con-
figurations by changing both the acoustic model and the language
model are run. The word error rates corresponding to the various
conditions are given in Table 4 using the manual MT segmentation.

4. STATISTICAL TRANSLATION ENGINE

The so-called IBM-4 [2] model was used in the translation engine.
A brief description of this model is given below along with the
decoding algorithm.

The translation problem is to find a target sentence e = e1 . . . eJ

that is a valid translation of a source sentence f = f1 . . . fI . Given
the fact that the translation models are largely imperfect and are not
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AM/LM 2-gram 3-gram NN 4-gram
Pass 1 models 16.3% 14.6% 13.7%
Pass 2 models 13.5% 11.8% 10.9%

Table 4. Word error rates with the first and second pass acoustic
models, with 3 different language models (manual segmentation
imposed by the reference translation).

guaranteed to produce a grammatical target sentence, the Bayes re-
lation is classically used:

argmax
e

Pr(e|f) = argmax
e

Pr(e) Pr(f |e) (1)

The search algorithm aims at finding what target sentence e is
most likely to have produced the source sentence f . The translation
model P (f |e) relies on four model components:

1. a fertility model n(φ|e) that models the number (φi) of
source words generated by each target word ei;

2. a lexical model of the form t(f |e), which gives the proba-
bility that the source word f translates into the target word
e;

3. a distortion model, that characterizes how words are re-
ordered when translated;

4. and probabilities to model the word insertion of target words
that are not aligned to any source words.

The target language model Pr(e) and the four translation sub-
models are combined in a log-linear fashion [9], where the combi-
nation coefficients are optimized on the development set.

An A* search has been implemented to find the best trans-
lation as predicted by the model, when given enough time and
memory, i.e. provided pruning did not eliminate it. The decoder
manages partial hypotheses, each of which translates a subset of
source words into a sequence of target words. Expanding a partial
hypothesis consists of covering one extra source position (in ran-
dom order) and, by doing so, appending one, several or possibly
zero target words to its target word sequence.

There are two expansion operators. This first one is called
“AddNZFert” and translates exactly one source word by one new
target word, preceded by zero or one unfertile target words. In the
current implementation, each source word has a maximum of 20
alternative translations, and for each target word e, a specific list of
10 target words that both occur frequently before e and are likely
to be of fertility 0 is constituted at training time using alignments
provided by Giza++. The “AddNZFert” operator thus produces a
maximum of 20 ∗ (1 + 10) = 220 partial hypotheses. The second
expansion operator, called “Extend”, translates exactly one source
word by aligning it to the last target word already produced. The
“Extend” operator produces 1 partial hypothesis if applicable, and
0 otherwise.

Partial hypotheses are stored in several queues so as to eas-
ily compare hypotheses. For a source sentence of length J , 2J

queues are created, one per subset of source positions. It is conse-
quently possible to keep those queues relatively small (usual size
is 10, a size of 20 gives results marginally different from an infinite
stack size) since hypotheses only “compete” with hypotheses that
cover the exact same set of source words. This form of pruning
is the only one that takes place during decoding. It allows decod-
ing of a 10-word long sentence in two seconds on average, with
decoding time almost doubling for each extra source word. To

avoid prohibitive decoding times, sentences are automatically split
at punctuation signs and at segmental cues (hypothesized punctu-
ation, pauses, breath) given by the speech recognizer, and further
split uniformly, if needed.

During decoding, admissible heuristics are used to speed up
decoding as well as to accurately prune hypotheses with a high as-
sociated probability but whose future expansions are sure to be of
low probability. Those heuristics are modeled after [10]. They
must be admissible, meaning that they always overestimate the
score of the hypothesis future, in order to keep the optimality of
the search.

For each source word f at position i, an upper bound Pi to the
probability of covering f is evaluated as follows. On the one hand,
f may be covered by the null target word e0 (which corresponds
to no actual target word), with the probability P 0

i = t(f |e0). On
the other hand, if f is to be translated by a (fertile) target word e,
the lexical, fertility and distortion submodels should be accounted
for. An upper bound to the probability P+

i of covering f with an
actual target word is:

P+
i = max

e,φ
t(f |e) φ

p
f(φ|e)dmax (2)

where dmax is constant: it is the maximum value the distortion
model can take. Finally, Pi is obtained as the minimum of P 0

i

and P+
i :

Pi = min
ą
P 0

i , P+
i

ć
(3)

Decoding uses a 3-gram target language model. Equivalent
hypotheses are merged, and only the best scoring one is expanded
further.

The BLEU score [11] using two reference translations is the
main metric used in this work to evaluate the translation quality.
This decoder achieves a BLEU score of 37.6 on the verbatim tran-
scriptions and of 34.6 on the 1-best speech recognition hypothesis
with a word error rate of about 10%. This is a relatively small de-
crease in performance. Different language models were used in the
speech recognizer while keeping the same acoustic models. Fig-
ure 1 shows BLEU scores against the word error rates of the var-
ious systems. As expected, the translation performance decreases
with increasing word error rate, although the linear dependence is
visually striking.

5. INTERACTION BETWEEN TRANSCRIPTION AND
TRANSLATION

The overall goal in the European TC-STAR project is to translate
speech from one language into spoken text in another language.
This can be decomposed into three tasks: recognition of the speech
in the source language, translation of the text from the source lan-
guage to the target language and synthesis of the target language
speech. In this work, we concentrate on the close interaction of
speech recognition and translation. The simplest way to do speech
translation is to first recognize the speech, then produce the most
likely hypothesis and to translate it as done in the previous section.
In the literature various approaches for closer coupling have been
proposed that can be roughly divided into two principles: tech-
niques based on finite-state transducers [16, 3, 4, 7] and techniques
based on n-best or lattice representations of the transcribed speech
signal [13, 17, 12]. For this work an n-best interface is used.
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Fig. 1. BLEU score with 6 ASR conditions: 2 acoustic models
and 3 language models (NN 4-gram, 3-gram, 2-gram) using the
MT system and a 1-best ASR-MT interface.

5.1. Theoretical background

Let us consider speech translation in the context of Bayes deci-
sion theory. We are looking for a target language sentence e given
the acoustic signal x. Following work described by Ney [8], the
recognized source text f is considered as a hidden variable:

e∗ = arg max
e

Pr(e|x)

= arg max
e

Pr(e) Pr(x|e)

= arg max
e

Ã
Pr(e)

X
f

Pr(x, f |e)

!

= arg max
e

Ã
Pr(e)

X
f

Pr(f |e) Pr(x|f , e)

!

= arg max
e

Ã
Pr(e)

X
f

Pr(f |e) Pr(x|f)
!

(4)

≈ arg max
e

ş
Pr(e)max

f
Pr(f |e) Pr(x|f)

ť
(5)

Here the assumption was made that knowing the source f , the tar-
get string e does not help to predict the acoustic observation x, i.e.
Pr(x|f , e) = Pr(x|f). An important step is to approximate the
sum over f by the maximum. Only in this case we can actually
say that there is a recognized source word sequence f . Equation 5
suggests that strictly speaking the source language model Pr(f) is
not necessary for the speech translation task. This motivated the
following experimental setup.

5.2. Need for a source language model

For each language model and each speech segment a n-best list of
hypotheses is generated as follows. First, the 1000 most likely dif-
ferent hypotheses are extracted from the lattices generated by the
speech recognizer. In practice, many utterances have fewer differ-
ent hypotheses. Then, hypotheses that are identical for the transla-
tion engine are merged, in particular by removing pronunciations
variants, filler words and breath noise. Their maximal acoustic

score is retained for the resulting hypothesis. At this point, the av-
erage sizes of the n-best lists varied between 85 and 142 depending
on the language models. No attempts were made to optimize their
size for translation, the variation in size is a result of the pruning
during decoding. All the n-best lists are then translated.

Strictly applying equation 5, it should be possible to get the
same BLEU score as the 1-best translation by using the score of
the acoustic model to rerank the n-best translations, and this in-
dependently of the source language model used. Hypotheses were
obtained using as a cost-function a log-linear combination of the
target language model score, the MT and the acoustic model score.

As it can be seen from Figure 2 (by comparing the 2 lower
curves ASR-1-best and MT+AM) we were not able to match the
1-best solution by using the acoustic model scores in the log-linear
combination, independently of the source LM used to produce the
n-best lists. It even appears that the gap between the 1-best solu-
tion and the rescored n-best solution increases when better source
language models are used.

5.3. Putting back the source language model

From these experimental results it seems clear that the quality of
the source language model has an impact on the translation per-
formance. This could be explained as follows. Equation 5 can be
rewritten as:

e∗ ≈ arg max
e

ş
Pr(e)max

f
Pr(f |e) Pr(x|f)

ť
= arg max

e

ş
max

f
Pr(e, f) Pr(x|f)

ť
(6)

The translation model Pr(f |e) relates a whole target sentence to a
whole source sentence, which implicitly induces a structure on the
source sentence. In the case of a simple word translation model,
this effect would be rather weak, while stronger relationships can
be obtained using alignment templates or by directly estimating
the joint probability Pr(e, f) as suggested in [7]. If the translation
model Pr(f |e) was perfect, a source language model would prob-
ably be not necessary. Note that in text translation the source text
f is given and supposed to be well formed. This is not necessarily
the case if we search for all f maximizing equation 5. Therefore
it is wise to add a feature function to the log-linear combination in
order to ensure a well formed source sentence before translation.
The simplest solution is to add log Pr(f) to the feature functions.

This is similar to the experimental setup used in [17, 12] where
both ASR and MT generate multiple solutions resulting in n×m-
best lists. In these works the primary goal was only to improve
upon the 1-best translation, without studying the effect of differ-
ent source language models. As can be seen from Figure 2, a
consistent improvement in the BLEU score with respect to the
translation of the 1-best ASR solution was observed (see curve
MT+AM+SLM). The gain is 0.8 points in BLEU for the 2-gram
source LM and 0.6 points with the neural network LM.

6. MT SYSTEM OPTIMIZATION

Since the above experiments were carried out, the MT decoder has
been improved by adding support for both independent weighting
of the four translation sub-models and producing lattices. The new
decoder keeps back-pointers which enables it to dump the search
space it explored in the form of a lattice. The lattices are used to
tune the coefficients of the log-linear combination. We found that
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Fig. 2. BLEU score when using three different source language
models and different log-linear combinations (MT = machine
translation scores, AM = acoustic model scores and SLM = source
language model score)

the lattice framework is also useful to join sentences that have been
split due to their length. Instead of extracting separately the best
solution from the lattices corresponding to the different parts of
one sentence, all the lattices are sequentially connected and then
the global solution is extracted. In our experiments, this gave a
gain of 0.3 points in the BLEU score. By tuning the four sub-
model weights in the log-linear combination, an average 2.5 gain
in the BLEU score was observed.

This recently improved version of the MT decoder achieves
a BLEU score of 40.5 on the verbatim text and a BLEU score of
37.3 on the 1-best ASR output.

7. CONCLUSIONS

This paper described a complete system for speech translation from
Spanish to English of public sessions of the European parliament,
thus an unconstrained real-world task. The speech recognizer uses
the same architecture and decoding procedure as the LIMSI Broad-
cast News system. The MT system uses the word-based IBM-4
model and implements an A* search with limited pruning. MT re-
sults were compared using manual transcriptions and 1-best ASR
hypotheses with different word error rates. There is a striking lin-
ear dependence of the decrease in translation performance as a
function of increasing word error rate.

With a 10% word error rate of the ASR component, the BLEU
score is reduced by only about 3% with respect to the score ob-
tained when translating the manual reference transcripts.

Looking at the coupling of ASR and MT, we studied how
degraded source language models impact the translation perfor-
mance and to what extent combining acoustic scores and transla-
tion scores can recover the loss in n-best rescoring experiments.
Combining the acoustic score alone with the translation score, we
were unable to rerank the translated n-best lists and to match or
improve on the translation of the 1-best solution. We explain this
by the weakness of the translation model. Using however the com-
plete score of the speech recognizer, i.e. including the acoustic
and source language model scores, a consistent improvement in
the BLEU score with respect to the 1-best solution was observed.
This is consistent with results reported by others [17, 12].
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